Cluster 10: Semiconductor Materials and Device Engineering

Cluster 10: Semiconductor Materials and Device Engineering

Prerequisites: Chemistry and Introductory Physical Sciences or equivalent.

Instructor: Michael Oye, PhD (Department of Electrical and Computer Engineering)

Fundamentals of Semiconductor Materials and Processing

Basic principles of semiconductor materials and its synthesis techniques will be covered, as well as standard device fabrication sequences necessary for functional engineering applications. Scientific principles, such as semiconductor bandgaps, electrical charge carriers, conductors and insulators will be covered, and how semiconductor processing techniques are used for manufacturing of these materials. These semiconductor materials are used in integrated circuit (i.e. computer chips) fabrication, as well as other engineering applications, such as DNA and biomolecular detection, chemical and biological sensing, battery technologies, display screens for TVs, and solar cells. After taking this course, students will also develop an appreciation of the complex engineering challenges necessary with semiconductor materials engineering for advanced device processing applications in the future.

Instructor: Nobuhiko P. Kobayashi, PhD (Department of Electrical and Computer Engineering)

Semiconductor Devices  

Fundamental principles of semiconductors (such as silicon) and how they are applied toward engineering applications. The basic science and operation of semiconductor devices (such as transistors, solar cells, computer chips, memory devices, and LEDs) will be discussed. An overview of the basic solid state scientific principles and applications of pn junctions for semiconductor devices will be covered. In addition, the processes necessary for incorporating these different principles into a functioning device will be discussed, as well as current engineering challenges required for further device development. Upon completion of this course, students should be able to describe how different semiconductor devices vary in their operation, and how these differences can be utilized toward the engineering of functional semiconductor devices.

Transferable Skills: Tools for Success

The transferable skills will be the basic engineering principles and processes widely used in the semiconductor and related industries, especially those involving materials engineering in the Silicon Valley. Additionally, current engineering challenges will be discussed to develop an appreciation of addressing unknown questions and answers -- There are many times in engineering practice where there is no "right" answer or it is unknown and decisions still need to be made, and therefore leads to compromises between various scientific, economic, and technical issues. The tools that students will develop are the basic scientific and engineering principles, as well as how to apply these principles in practice.